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SECTION 5.2: DEFINITE INTEGRALS

1. Introduction

In the previous section we looked at approximating the area under a curve. One can extend this

notion to finding the exact area under a curve, but to do so you need to bring in limits. As you may

recall from Calc 1, applying limits can be rather tedious, and one of the main things you should

learn from this section is that finding the exact area under a curve by using limits is not much fun

at all. This will make us desperate for an easier way, which we shall learn about in the sections

to come. Most of the material in this section was presented in section 5.1, but we now introduce

some more notation and terminology that will be important in the sections to come.

2. The Definite Integral

Recall that we use sigma notation to indicate when we are adding up a bunch of terms. For

example, if x1, x2, x3 are my sample points (suppose they are all right endpoints), then I could

approximate the area under a curve with three subintervals as f(x1)∆x + f(x2)∆x + f(x3)∆x.

Using sigma notation, we write this as

f(x1)∆x+ f(x2)∆x+ f(x3)∆x =
3∑
i=1

f(xi)∆x.

Definition 1. Let f be a continuous function. Then the definite integral of f from a to b is∫ b

a
f(x)dx = lim

n→∞

n∑
i=1

f(x∗i )∆x

where the x∗1, x
∗
2, etc are the sample points in each subinterval (which we usually take to be the right

or left endpoint or the midpoint). Note that ∆x =
b− a

n
and x∗i lies in the subinterval [xi−1, xi];

so x∗1 is in the interval [x0, x1] and x∗8 is in the interval [x7, x8].

We call a the lower limit of integration and b the upper limit of integration.
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Definition 2. A Riemann Sum is equal to

n∑
i=1

f(x∗i )∆x without the lint in front. Riemann sums

are used to get an approximation for
∫ b
a f(x)dx, and are exactly what we calculated in the previous

section.

Remark. Both a definite integral and a Riemann sum can be negative, if the function f happens

to lie below the x-axis.

Example 3. Approximate

∫ 2π

0
(x− 2 sin(2x))dx by calculating the Riemann sum for x− 2 sin(2x)

on the interval [0, 2π], using six subintervals and the midpoint as your sample points.

3. Evaluating a definite integral using the definition

As annoying as it may be to use Riemann sums to approximate the definite integral, actually

calculating a definite integral can be much more annoying and terrible. We did one example in the

previous section that was tedious, and we will now do one that is even worse.
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Example 4. Evaluate
∫ 5
1 (x2 − 3x)dx.

Exercise 5. Evaluate
∫ 3
0 (2x+ 3)dx.
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4. Evaluating an integral using geometry

Sometimes you can calculate a definite integral by using the fact that it gives you the exact area

between the curve and the x-axis, as well as area formulas from geometry.

Example 6. Find
∫ 9
0 f(x)dx, where f(x) =

2
3x− 2 on [0, 3]√

9 − (x− 6)2 on [3, 9]
.

	  

5. Properties of the Definite Integral

Using our knowledge of area, as well as the definition of the definite integral, we can prove the

following properties:

(a)
∫ b
a f(x)dx = −

∫ a
b f(x)dx.

(b)
∫ a
a f(x)dx = 0.

(c)
∫ b
a (f(x) ± g(x))dx = −

∫ a
b f(x)dx±

∫ a
b g(x)dx.

(d)
∫ b
a c · f(x)dx = c

∫ a
b f(x)dx where c is any constant.

(e)
∫ b
a cdx = c(b− a) where c is any constant.

(f)
∫ c
a f(x)dx+

∫ b
c f(x)dx =

∫ b
a f(x)dx.
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Justification of (a), (c), and (e):

Exercise 7. Use similar ideas to the justifications above to explain (b), (d) and (f). A short

equation or diagram might be enough for some of them.


